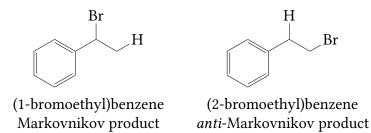

Table 2: FT-IR Spectral Data					
Structure	Wavenumber (cm ⁻¹) Literature Experimental		Intensity	Functional Group	
Br	3034	3036	Weak	C _{sp²} -H	
	2992	2986	Weak	С _{sp²} -Н С _{sp³} -Н	
	966	966	Medium	Ċ-X	
	910	761	Strong	1-sub. benzene	
	695	694	Strong	1-sub. benzene	

Table 3: ¹ H NMR Spectral Data						
Assignment	δ (ppm)	Integration	Multiplicity			
А	1.95	3	d			
В	5.17	1	q			
С	7.32	5	m			
D	7.32	5	m			
E	7.32	5	m			
F	7.32	5	m			
G	7.32	5	m			
	Assignment A B C D E F	Assignment δ (ppm)A1.95B5.17C7.32D7.32E7.32F7.32	Assignment δ (ppm)IntegrationA1.953B5.171C7.325D7.325E7.325F7.325			


Table 3: ¹H NMR Spectral Data

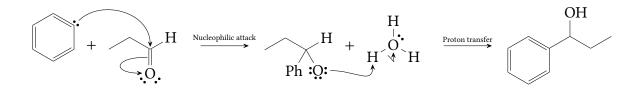
3 Chemistry

The reaction performed in this experiment, treating an alkene with H-X, is known as a hydrohalogenation reaction, and follows this specific mechanism:

The regiochemistry of this reaction must be considered as there are two vinylic positions that could have beared the hydrogen. Hence, these are the two possible products of this reaction:

Table 2: FT-IR Spectral Data					
Structure	Wavenumber (cm ⁻¹) Literature Experimental		Intensity	Functional Group	
OH	3366	3401	Strong	-OH str.	
	3063	3063	Medium	C _{sp²} -H str.	
	2965	2972	Strong	C_{sp^3} -H str.	
	746	738	Strong	monosub. benzene	
	700	701	Strong	monosub. benzene	

Table 3: ¹H NMR Spectral Data


Structure	Assignment	δ (ppm)	Integration	Multiplicity
OH	А	7.30	5	S
(A) (E)	В	4.55	1	t
(A) (B)	С	2.24	1	bs
(D)	D	1.68	2	q
(A) (A) (A)	E	1.06	1	m

3 Chemistry

In order to perform this reaction, a Grignard reagent first needed to be made. This is typically performed by reacting an alkyl halide with Mg, as shown below. C is far more electronegative than Mg, withdrawing electron density from Mg to give it a δ - charge. The difference is so large that it can be depicted as an ionic bond³.

This allows the Grignard reagent to react as a carbon nucleophile, attacking the electrophilic carbonyl group as shown below.

